NIH researchers identify sequence leading to release of malaria parasites from red blood cells
Findings could inform the development of new antimalarial drugs.
The vacuole, a compartment inside human red blood cells in which malaria parasites reproduce and develop, takes on a distinct spherical shape just minutes before its membrane ruptures, leading to the release of parasites into the blood stream, according to researchers at the National Institutes of Health and other institutions. Their study appears in Cellular Microbiology.
The researchers, working with red blood cells from healthy donors, were able to chemically block the sequence of events leading to this rounding of the vacuole. They note that targeting this sequence could inform new treatment strategies against Plasmodium falciparum, the species of malaria parasite that causes the most deaths worldwide and, in several areas, has become drug-resistant.
To track the rounding sequence under a microscope, researchers dyed the membrane of the vacuole with a substance that gives off green light. About 10 minutes before the membrane ruptured, the vacuole morphed from a lumpy, uneven shape to a sphere. Previous studies have shown that malaria parasites use calcium to trigger the biochemical reactions needed for their release from the cell. When the researchers treated the cells with a compound that blocks calcium’s effect, the vacuoles couldn’t transition to the spherical form, trapping the parasites inside the cell.
Source: U.S. National Institutes of Health
- 266 reads
Human Rights
Ringing FOWPAL’s Peace Bell for the World:Nobel Peace Prize Laureates’ Visions and Actions
Protecting the World’s Cultural Diversity for a Sustainable Future
The Peace Bell Resonates at the 27th Eurasian Economic Summit
Declaration of World Day of the Power of Hope Endorsed by People in 158 Nations
Puppet Show I International Friendship Day 2020