Science

Tags:

New study reveals what's behind a tarantula's blue hue: Researchers uncover nanostructures in exoskeleton of blue-haired tarantulas

Scientists recently discovered that tiny, multilayer nanostructures inside a tarantula's hair are responsible for its vibrant color. The science behind how these hair-raising spiders developed their blue hue may lead to new ways to improve computer or TV screens using biomimicry.

52639.jpg
This is a critically endangered gooty sapphire ornamental tarantula and its reflection.

Tags:

MIT mathematicians identify limits to heat flow at the nanoscale: New formula identifies limits to nanoscale heat transfer, may help optimize devices that convert heat to electricity

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can warm you up, to how much heat the Earth absorbs from the sun. But predicting such radiative heat transfer between extremely close objects has proven elusive for the past 50 years.

52623.jpg
MIT mathematicians have identified the limits to heat flow at the nanoscale.

Tags:

Scientists 'see' detailed make-up of deadly toxin for the first time: Exciting advance provides hope for developing novel potential method of treating pneumococcal diseases such as bacterial pneumonia, meningitis and septicaemia

Scientists from the University of Leicester have for the first time created a detailed image of a toxin - called pneumolysin - associated with deadly infections such as bacterial pneumonia, meningitis and septicaemia.

52621.jpg
Figure shows the way that copies of the toxin pack together to form pores in cells.

Tags:

NASA's Curiosity Mars Rover Heads Toward Active Dunes

PIA19928_hires_0.jpg
This Sept. 25, 2015, view from the Mast Camera on NASA's Curiosity Mars rover shows a dark sand dune in the middle distance.

Tags:

ORNL microscopy captures real-time view of evolving fuel cell catalysts

Atomic-level imaging of catalysts by scientists at the Department of Energy's Oak Ridge National Laboratory could help manufacturers lower the cost and improve the performance of emission-free fuel cell technologies.

52610.jpg
Models of platinum-cobalt nanoparticle catalysts illustrate how specific atomic configurations originate and evolve as the particles are heated.

Tags:

Nanocarriers may carry new hope for brain cancer therapy: Berkeley Lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier

Glioblastoma multiforme, a cancer of the brain also known as "octopus tumors" because of the manner in which the cancer cells extend their tendrils into surrounding tissue, is virtually inoperable, resistant to therapies, and always fatal, usually within 15 months of onset. Each year, glioblastoma multiforme (GBM) kills approximately 15,000 people in the United States. One of the major obstacles to treatment is the blood brain barrier, the network of blood vessels that allows essential nutrients to enter the brain but blocks the passage of other substances. What is desperately needed is a means of effectively transporting therapeutic drugs through this barrier. A nanoscience expert at Lawrence Berkeley National Laboratory (Berkeley Lab) may have the solution.

52611.jpg
At only 20 nanometers in size and featuring a unique hierarchical structure, 3HM nanocarriers meet all the size and stability requirements for effectively delivering therapeutic drugs to brain cancer tumors.

Tags:

UMD & Army researchers discover salty solution to better, safer batteries: Greatest potential uses seen in safety-critical, automotive and grid-storage applications

A team of researchers from the University of Maryland (UMD) and the U.S. Army Research Laboratory (ARL) have devised a groundbreaking "Water-in-Salt" aqueous Lithium ion battery technology that could provide power, efficiency and longevity comparable to today's Lithium-ion batteries, but without the fire risk, poisonous chemicals and environmental hazards of current Lithium batteries.

The team of researchers, led by Chunsheng Wang, an associate professor in UMD's Department of Chemical & Biomolecular Engineering, and Kang Xu, senior research chemist at the Sensor and Electron Devices Directorate of ARL, said their work, published this week in the journal Science, demonstrates a major advance in the long history of water-based (aqueous) batteries by doubling the voltage, or power, of an aqueous battery.

Tags:

NASA Orders SpaceX Crew Mission to International Space Station

NASA took a significant step Friday toward expanding research opportunities aboard the International Space Station with its first mission order from Hawthorne, California based-company SpaceX to launch astronauts from U.S. soil.

Tags:

A new symmetry underlies the search for new materials

A new symmetry operation developed by Penn State researchers has the potential to speed up the search for new advanced materials that range from tougher steels to new types of electronic, magnetic, and thermal materials. With further developments, this technique could also impact the field of computational materials design.

"In the physical sciences, making measurements can be time consuming and so you don't want to make unnecessary ones," said Venkat Gopalan, professor of materials science and engineering. "This is true for any material property -- mechanical, electrical, optical, magnetic, thermal or any other. Knowing the symmetry group of a material can greatly reduce the number of measurements you have to make. "

Tags:

3D nanostructure of a bone made visible

Bones are made up of tiny fibres that are roughly a thousand times finer than a human hair. One major feature of these so-called collagen fibrils is that they are ordered and aligned differently depending on the part of the bone they are found in. Although this ordering is decisive for the mechanical stability of the bone, traditional computer tomography (CT) can only be used to determine the density but not the local orientation of the underlying nanostructure. Researchers at the Paul Scherrer Institute PSI have now overcome this limitation thanks to an innovative computer-based algorithm. They applied the method to measurements of a piece of bone obtained using the Swiss Light Source SLS. Their approach enabled them to determine the localised order and alignment of the collagen fibrils inside the bone in three dimensions. Aside from bone, the method can be applied to a wide variety of biological and materials science specimens.

52582.jpg
The bone and its nanostructure: Thanks to their newly developed algorithm, researchers at PSI succeeded in mapping the order and alignment of the tiny collagen fibrils in this entire bone fragment of roughly two and a half millimetre length.