Science

Tags:

NASA's Curiosity Mars Rover Heads Toward Active Dunes

PIA19928_hires_0.jpg
This Sept. 25, 2015, view from the Mast Camera on NASA's Curiosity Mars rover shows a dark sand dune in the middle distance.

Tags:

ORNL microscopy captures real-time view of evolving fuel cell catalysts

Atomic-level imaging of catalysts by scientists at the Department of Energy's Oak Ridge National Laboratory could help manufacturers lower the cost and improve the performance of emission-free fuel cell technologies.

52610.jpg
Models of platinum-cobalt nanoparticle catalysts illustrate how specific atomic configurations originate and evolve as the particles are heated.

Tags:

Nanocarriers may carry new hope for brain cancer therapy: Berkeley Lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier

Glioblastoma multiforme, a cancer of the brain also known as "octopus tumors" because of the manner in which the cancer cells extend their tendrils into surrounding tissue, is virtually inoperable, resistant to therapies, and always fatal, usually within 15 months of onset. Each year, glioblastoma multiforme (GBM) kills approximately 15,000 people in the United States. One of the major obstacles to treatment is the blood brain barrier, the network of blood vessels that allows essential nutrients to enter the brain but blocks the passage of other substances. What is desperately needed is a means of effectively transporting therapeutic drugs through this barrier. A nanoscience expert at Lawrence Berkeley National Laboratory (Berkeley Lab) may have the solution.

52611.jpg
At only 20 nanometers in size and featuring a unique hierarchical structure, 3HM nanocarriers meet all the size and stability requirements for effectively delivering therapeutic drugs to brain cancer tumors.

Tags:

UMD & Army researchers discover salty solution to better, safer batteries: Greatest potential uses seen in safety-critical, automotive and grid-storage applications

A team of researchers from the University of Maryland (UMD) and the U.S. Army Research Laboratory (ARL) have devised a groundbreaking "Water-in-Salt" aqueous Lithium ion battery technology that could provide power, efficiency and longevity comparable to today's Lithium-ion batteries, but without the fire risk, poisonous chemicals and environmental hazards of current Lithium batteries.

The team of researchers, led by Chunsheng Wang, an associate professor in UMD's Department of Chemical & Biomolecular Engineering, and Kang Xu, senior research chemist at the Sensor and Electron Devices Directorate of ARL, said their work, published this week in the journal Science, demonstrates a major advance in the long history of water-based (aqueous) batteries by doubling the voltage, or power, of an aqueous battery.

Tags:

NASA Orders SpaceX Crew Mission to International Space Station

NASA took a significant step Friday toward expanding research opportunities aboard the International Space Station with its first mission order from Hawthorne, California based-company SpaceX to launch astronauts from U.S. soil.

Tags:

A new symmetry underlies the search for new materials

A new symmetry operation developed by Penn State researchers has the potential to speed up the search for new advanced materials that range from tougher steels to new types of electronic, magnetic, and thermal materials. With further developments, this technique could also impact the field of computational materials design.

"In the physical sciences, making measurements can be time consuming and so you don't want to make unnecessary ones," said Venkat Gopalan, professor of materials science and engineering. "This is true for any material property -- mechanical, electrical, optical, magnetic, thermal or any other. Knowing the symmetry group of a material can greatly reduce the number of measurements you have to make. "

Tags:

3D nanostructure of a bone made visible

Bones are made up of tiny fibres that are roughly a thousand times finer than a human hair. One major feature of these so-called collagen fibrils is that they are ordered and aligned differently depending on the part of the bone they are found in. Although this ordering is decisive for the mechanical stability of the bone, traditional computer tomography (CT) can only be used to determine the density but not the local orientation of the underlying nanostructure. Researchers at the Paul Scherrer Institute PSI have now overcome this limitation thanks to an innovative computer-based algorithm. They applied the method to measurements of a piece of bone obtained using the Swiss Light Source SLS. Their approach enabled them to determine the localised order and alignment of the collagen fibrils inside the bone in three dimensions. Aside from bone, the method can be applied to a wide variety of biological and materials science specimens.

52582.jpg
The bone and its nanostructure: Thanks to their newly developed algorithm, researchers at PSI succeeded in mapping the order and alignment of the tiny collagen fibrils in this entire bone fragment of roughly two and a half millimetre length.

Tags:

Application of Nanocomposite Membranes in Fuel Cells to Produce Green Energy

The application of fuel cells increases every day in various industries due to the importance of using sustainable and green energy sources.

52574_0.jpg

Tags:

Plasma Focus Device Applied to Produce Zinc Oxide Nanofilms

A group of Iranian researchers used a new method to produce nanostructured films in a short period of time at room temperature.

52575_0.jpg

Tags:

Ultra-short X-ray pulses could shed new light on the fastest events in physics

If you've ever been captivated by slow-motion footage on a wildlife documentary, or you've shuddered when similar technology is used to replay highlights from a boxing match, you'll know how impressive advancements in ultra-fast science can be.

Researchers from the Department of Physics at Oxford University (with colleagues at the Rutherford Appleton Laboratory and the University of Strathclyde) have demonstrated, for the first time, that it is possible to generate ultra-short x-ray pulses using existing technology - and it could open up a huge range of scientific applications.