Science

Tags:

The Turbulent Birth of a Quasar

ALMA reveals secrets of most luminous known galaxy in Universe

Quasars are distant galaxies with very active supermassive black holes at their centres that spew out powerful jets of particles and radiation. Most quasars shine brightly, but a tiny fraction of these energetic objects are of an unusual type known as Hot DOGs, or Hot, Dust-Obscured Galaxies, including the galaxy WISE J224607.57-052635.0, the most luminous known galaxy in the Universe.

Tags:

First all-antiferromagnetic memory device could get digital data storage in a spin

If you haven't already heard of antiferromagnetic spintronics it won't be long before you do. This relatively unused class of magnetic materials could be about to transform our digital lives. They have the potential to make our devices smaller, faster, more robust and increase their energy efficiency.

Physicists at The University of Nottingham, working in collaboration with researchers in the Czech Republic, Germany and Poland, and Hitachi Europe, have published (2pm US ET Thursday 14 January 2016) new research in the prestigious academic journal Science which shows how the 'magnetic spins' of these antiferromagnets can be controlled to make a completely different form of digital memory.

Tags:

NASA's Stardust Sample Return was 10 Years Ago Today

It was less than an hour into the new day of January 15, 2006 (EST), when tens of thousands of miles above our planet, two cable cutters and two retention bolts fired, releasing a spring which pushed a 101-pound (46-kilogram) sample return capsule away from its mother ship. Later, during its final plunge Earthward, the capsule would become the fastest human-made object to enter our atmosphere, achieving a velocity of about 28,600 mph (12.8 kilometers per second).

Tags:

Shiny fish skin inspires nanoscale light reflectors

A nature-inspired method to model the reflection of light from the skin of silvery fish and other organisms may be possible, according to Penn State researchers.

Such a technique may be applicable to developing better broadband reflectors and custom multi-spectral filters for a wide variety of applications, including advanced optical coatings for glass, laser protection, infrared imaging systems, optical communication systems and photovoltaics, according to Douglas Werner, John L. and Genevieve H. McCain Chair Professor in Electrical Engineering, Penn State.

Tags:

Photochromic Nanostructures; Tools to Detect, Tract Living Cells

Researchers from Iran Polymer and Petrochemical Institute (IPPI) succeeded in the laboratorial production of nanostructures with the ability to change color under UV light and application in various fields, including medicine, production of optical lenses, cell tracing, data storage and security systems.

52839_0.jpg

Tags:

SiC Nanoparticles Applied to Modify Properties of Portland Cement

Iranian researchers from University of Mazandaran used silicon carbide (SiC) nanoparticles to produce a sample of cement and concrete with high durability and stability.

52838_0.jpg

Tags:

New LED with luminescent proteins

Scientists from Germany and Spain have discovered a way to create a BioLED by packaging luminescent proteins in the form of rubber. This innovative device gives off a white light which is created by equal parts of blue, green and red rubber layers covering one LED, thus rendering the same effect as with traditional inorganic LEDs but at a lower cost.

52831.jpg
This image shows rubber with red, green and blue luminescent proteins used to produce the BioLEDs.

Tags:

How copper makes organic light-emitting diodes more efficient: KIT researchers measure intersystem crossing directly in a thermally activated delayed fluorescence copper complex -- publication in Science Advances

Use of copper as a fluorescent material allows for the manufacture of inexpensive and environmentally compatible organic light-emitting diodes (OLEDs). Thermally activated delayed fuorescence (TADF) ensures high light yield. Scientists of Karlsruhe Institute of Technology (KIT), CYNORA, and the University of St Andrews have now measured the underlying quantum mechanics phenomenon of intersystem crossing in a copper complex. The results of this fundamental contribute to enhancing the energy efficiency of OLEDs.

52834.jpg
Thanks to knowledge of their quantum mechanics, dyes can be customized for use in organic light-emitting diodes.

Tags:

How seashells get their strength: Study shows how calcium carbonate forms composites to make strong materials such as in shells and pearls

Seashells and lobster claws are hard to break, but chalk is soft enough to draw on sidewalks. Though all three are made of calcium carbonate crystals, the hard materials include clumps of soft biological matter that make them much stronger. A study today in Nature Communications reveals how soft clumps get into crystals and endow them with remarkable strength.

The results show that such clumps become incorporated via chemical interactions with atoms in the crystals, an unexpected mechanism based on previous understanding. By providing insight into the formation of natural minerals that are a composite of both soft and hard components, the work will help scientists develop new materials for a sustainable energy future, based on this principle.

Tags:

Tiny 'flasks' speed up chemical reactions: Self-assembling nanosphere clusters may improve everything from drug synthesis to drug delivery

Miniature self-assembling "flasks" created at the Weizmann Institute may prove a useful tool in research and industry. The nanoflasks, which have a span of several nanometers, or millionths of a millimeter, can accelerate chemical reactions for research. In the future, they might facilitate the manufacture of various industrial materials and perhaps even serve as vehicles for drug delivery.

Dr. Rafal Klajn of the Weizmann Institute's Organic Chemistry Department and his team were originally studying the light-induced self-assembly of nanoparticles. They were employing a method earlier developed by Klajn in which inorganic nanoparticles are coated in a single layer of organic molecules that change their configuration when exposed to light; these alter the properties of the nanoparticles such that they self-assemble into crystalline clusters. When spherical nanoparticles of gold or other materials self-assembled into a cluster, empty spaces formed between them, like those between oranges packed in a case. Klajn and his team members realized that the empty spaces sometimes trapped water molecules, which led them to suggest that they could also trap "guest" molecules of other materials and function as tiny flasks for chemical reactions. A cluster of a million nanoparticles would contain a million such nanoflasks.