Science

Tags:

Kepler Watches Stellar Dancers in the Pleiades Cluster.

Like cosmic ballet dancers, the stars of the Pleiades cluster are spinning. But these celestial dancers are all twirling at different speeds. Astronomers have long wondered what determines the rotation rates of these stars.

Tags:

NREL technique leads to improved perovskite solar cells

Scientists at the Energy Department's National Renewable Energy Laboratory (NREL), in collaboration with researchers at Shanghai Jiao Tong University (SJTU), devised a method to improve perovskite solar cells, making them more efficient and reliable with higher reproducibility.

The research, funded by the U.S. Department of Energy SunShot Initiative, involved hybrid halide perovskite solar cells and revealed treating them with a specific solution of methyl ammonium bromide (MABr) would repair defects, improving efficiency. The scientists converted a low-quality perovskite film with pinholes and small grains into a high-quality film without pinholes and with large grains. Doing so boosted the efficiency of the perovskite film in converting sunlight to 19 percent.

Tags:

Cement design should take into account the water confined in the smallest pores: A researcher at the UPV/EHU-University of the Basque Country is participating in the study of the stresses of confined water in the micropores of cement at extreme temperatur

As it is a basic building material used across the world, cement is subjected to a vast range of conditions, both physiological and meteorological, no matter whether they are caused by extreme temperatures and humidity, pressure, etc. It is possible to find conditions ranging from -80 ºC, in places such as the scientific bases in the Antarctic, to several hundreds of degrees in infrastructures close to heat sources or in the case of fires, for example.

These variations in humidity and temperature are translated into physical processes involving evaporation or freezing of the water contained in the cement paste, which often cause stresses and even micro-cracking inside the cement. Characterizing the response to these phenomena affecting the confined water in the smallest pores of the cement "is hugely important as a large proportion of the water, about 30 %, is located in these small spaces, so to a great extent it contributes towards the final properties of the material," explained Hegoi Manzano, a researcher in the UPV/EHU's department of Condensed Matter Physics, and author of the study in collaboration with a research group of the University of Tohoku in Japan.

Tags:

Prototype chip could help make quantum computing practical: Built-in optics could enable chips that use trapped ions as quantum bits

Quantum computers are largely hypothetical devices that could perform some calculations much more rapidly than conventional computers can. Instead of the bits of classical computation, which can represent 0 or 1, quantum computers consist of quantum bits, or qubits, which can, in some sense, represent 0 and 1 simultaneously.

53805.jpg
Researchers from MIT and MIT Lincoln Laboratory report an important step toward practical quantum computers, with a paper describing a prototype chip that can trap ions in an electric field and, with built-in optics, direct laser light toward each of them.

Tags:

Lithium-ion batteries: Capacity might be increased by 6 times

The team was able to show through neutron measurements made at the Institut Laue-Langevin in Grenoble, France, that lithium ions do not penetrate deeply into the silicon. During the charge cycle, a 20-nm anode layer develops containing an extremely high proportion of lithium. This means extremely thin layers of silicon would be sufficient to achieve the maximal load of lithium.

53803.jpg
Lithium ions migrate through the electrolyte (yellow) into the layer of crystalline silicon (c-Si). During the charging cycle, a 20-nm layer (red) develops on the silicon electrode adsorbing extreme quantities of lithium atoms.

Tags:

Nothing -- and something -- give concrete strength, toughness: Rice University scientists show how voids, particles sap energy from cracks

What does one need to strengthen or toughen concrete? A lot of nothing. Or something. The "nothing" is in the form of microscopic voids and the "something" consists of particular particles embedded in the most common construction material on Earth. Rice University materials scientist Rouzbeh Shahsavari and postdoctoral researcher Ning Zhang analyzed more than 600 computer models of concrete's inner matrix to determine that both voids and portlandite particles are significant players in giving the material its remarkable qualities.

53800.jpg
Rice University researchers used computer models of concrete's inner matrix to show how tiny holes filled with portlandite (blue) impart strength and toughness by preventing the spread of cracks.

Tags:

Scientists discover light could exist in a previously unknown form

New research suggests that it is possible to create a new form of light by binding light to a single electron, combining the properties of both.

53792.jpg
Artistic image of light trapped on the surface of a nanoparticle topological insulator.

Tags:

NASA Charges Toward Greener Aviation With Novel Concepts

cast-2016_0.png
NASA Charges Toward Greener Aviation With Novel Concepts.

Tags:

Gentle cancer treatment using nanoparticles works

Cancer treatments based on laser irridation of tiny nanoparticles that are injected directly into the cancer tumor are working and can destroy the cancer from within. Researchers from the Niels Bohr Institute and the Faculty of Health Sciences at the University of Copenhagen have developed a method that kills cancer cells using nanoparticles and lasers. The treatment has been tested on mice and it has been demonstrated that the cancer tumors are considerably damaged. The results are published in the scientific journal, Scientific Reports.

53784.jpg
The images show PET scans of a mouse with a large tumor (by the white arrow). The tumor is treated with nanoparticles, which are injected directly into the tumor and are then flashed with near infrared laser light. The laser light heats the nanoparticles, thus damaging or killing the cancer cells (red arrows).

Tags:

Study Maps Hidden Water Pollution in U.S. Coastal Areas

earth20160804b_0.jpg
U.S. coastal areas where freshwater and seawater mix unseen below ground, making them vulnerable to ocean and/or drinking water contamination. Dark blue areas are vulnerable to land-to-sea pollution; pink to sea-to-land pollution; light blue to both. Areas may appear larger for visibility purposes.