Science

Tags:

Antarctic Site Promises to Open a New Window on the Cosmos

2016-28_0.jpg

Tags:

Sea ice hits record lows

The National Snow and Ice Data Center (NSIDC) is part of the Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder. NSIDC scientists provide Arctic Sea Ice News & Analysis content, with partial support from NASA.

N_stddev_timeseries-600_0.jpg
The graph above shows daily Arctic sea ice extent as of December 5, 2016, along with daily ice extent data for four previous years. 2016 is shown in blue, 2015 in green, 2014 in orange, 2013 in brown, and 2012 in purple. The 1981 to 2010 average is in dark gray. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data. High-resolution image.

Tags:

Giant heads sculpted from fruit and vegetables draw attention to rural communities at climate summit

Drawing attention to the impact that climate change is having on smallholder farmers and rural communities in developing countries, British artists Adam and Silas Birtwistle unveiled four giant heads – Voices from the Good Earth - sculpted from fruit and vegetables at the Convention on Biological Diversity’s Summit (CBD COP13) in Cancun, Mexico.

Tags:

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what you're looking at. Some photons reflect off, reaching your eyes. Others get absorbed. The main decider of which happens is the photon's energy - its colour.

But look closely at the moment that light meets matter, and there's more to be discovered. Scientists at the Centre for Quantum Technologies (CQT) at the National University of Singapore have just shown that a photon's shape also affects how it is absorbed by a single atom.

Tags:

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks

A new study by Lyle Hood, assistant professor of mechanical engineering at The University of Texas at San Antonio (UTSA), describes a new device that could revolutionize the delivery of medicine to treat cancer as well as a host of other diseases and ailments. Hood developed the device in partnership with Alessandro Grattoni, chair of the Department of Nanomedicine at Houston Methodist Research Institute.

"The problem with most drug-delivery systems is that you have a specific minimum dosage of medicine that you need to take for it to be effective," Hood said. "There's also a limit to how much of the drug can be present in your system so that it doesn't make you sick."

Tags:

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications

In a multi-national effort, an interdisciplinary team of researchers from DESY and the Massachusetts Institute of Technology (MIT) has built a new kind of electron gun that is just about the size of a matchbox. Electron guns are used in science to generate high-quality beams of electrons for the investigation of various materials, from biomolecules to superconductors. They are also the electron source for linear particle accelerators driving X-ray free-electron lasers. The team of DESY scientist Franz Kärtner, who is also a professor at University of Hamburg and continues to run a research group at MIT, where he taught till 2010 before coming to Hamburg, presents its new electron gun in the scientific journal Optica.

The new device uses laser generated terahertz radiation instead of the usual radio-frequency fields to accelerate electrons from rest. As the wavelength of the terahertz radiation is much shorter than radio-frequency radiation, the device can shrink substantially. While state-of-the-art electron guns can have the size of a car, the new device measures just 34 by 24.5 by 16.8 millimetres.

Tags:

A Stellar Circle of Life

2016-27_0.jpg

Tags:

Cutting-edge nanotechnologies are breaking into industries

The first-ever Industry Summit in the rapidly developing and expanding field of nanoaugmented materials was held on 14–16 November at the birthplace of the world’s largest production facility for single wall carbon nanotubes, in Novosibirsk, Russia. The organiser of the event – OCSiAl – synthesises almost 90% of the world’s capacity of this unique conductive additive for thousands of materials.

Single wall carbon nanotubes are one of the most effective conductive additives – they are able to significantly increase electrical and thermal conductivity, and to improve the mechanical properties and other important characteristics of materials. However, their key advantage is that these desired properties can be achieved with ultralow loadings of the additive – hundreds or thousands of times lower than other widely used conductive additives, and starting from concentrations of just 0.01%. OCSiAl’s huge share of this market is a direct result of the unique technology it has developed that allows it to produce high-quality single wall carbon nanotubes, under the TUBALL™ brand, on an industrial scale, and at a price 75 times lower than that of the nearest analogues. The company has also developed super-concentrates that simplify the introduction of nanotubes into materials and do not require changes in production processes.

Tags:

New Ceres Views as Dawn Moves Higher

The brightest area on Ceres stands out amid shadowy, cratered terrain in a dramatic new view from NASA's Dawn spacecraft, taken as it looked off to the side of the dwarf planet. Dawn snapped this image on Oct. 16, from its fifth science orbit, in which the angle of the sun was different from that in previous orbits. Dawn was about 920 miles (1,480 kilometers) above Ceres when this image was taken -- an altitude the spacecraft had reached in early October.

Tags:

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine

Scientists from the Moscow Institute of Physics and Technology (MIPT), Semenov Institute of Chemical Physics of the Russian Academy of Sciences (ICP RAS), and Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine (ISC NASU) have proposed a model nanosized dipole photomotor based on the phenomenon of light-induced charge redistribution. Triggered by a laser pulse, this tiny device is capable of directed motion at a record speed and is powerful enough to carry a certain load. The research findings were published in the Journal of Chemical Physics.

"The unprecedented characteristics of dipole photomotors based on semiconductor nanoclusters offer the prospect of more than just addressing a certain scarcity of the translational photomotors family. These devices could actually be applied wherever rapid nanoparticle transport is required. In chemistry and physics, they could help develop new analytical and synthetic instruments, while in biology and medicine they could be used to deliver drugs to diseased tissues, improve gene therapy strategies, and so on," says Prof. Leonid Trakhtenberg of the Department of Molecular and Chemical Physics at MIPT, who is the leader of the research team and the head of the Laboratory of Functional Nanocomposites at ICP RAS.