Science

Tags:

Novel Nanoparticles for Easier Biomarker Detection

Finding ways to diagnose cancer earlier could greatly improve the chances of survival for many patients. One way to do this is to look for specific proteins secreted by cancer cells, which circulate in the bloodstream. However, the quantity of these biomarkers is so low that detecting them has proven difficult.

46630.jpg
These nanoparticles created by MIT engineers can act as synthetic biomarkers for disease. The particles (brown) are coated with peptides (blue) that are cleaved by enzymes (green) found at the disease site. The peptides then accumulate in the urine, where they can be detected using mass spectrometry.

Tags:

Synthetic and biological nanoparticles combined to produce new metamaterials

Scientists from Aalto University, Finland, have succeeded in organising virus particles, protein cages and nanoparticles into crystalline materials. These nanomaterials studied by the Finnish research group are important for applications in sensing, optics, electronics and drug delivery.

46631.jpg
Two different protein cages, cowpea chlorotic mottle virus (blue) and Pyrococcus furiosus ferritin (red), can be used to guide the assembly of binary nanoparticles superlattices through tunable electrostatic interactions with charged gold nanoparticles (yellow).

Tags:

Hubble's "Smoky" Shells

714079main1_ngc7354-673_0.JPG

Tags:

NASA to Provide Commentary as Grail Moon Mission Ends

pia16492-640 (1)_0.jpg
This still image and animation shows the final flight path for NASA's twin Gravity Recovery and Interior Laboratory (GRAIL) mission spacecraft, which will impact the moon on Dec. 17, 2012, around 2:28 p.m. PST.

Tags:

Dreidel-like dislocations lead to remarkable properties: Rice University theory predicts formation of conductive sub-nano ‘wires’ in two-dimensional materials

A new material structure predicted at Rice University offers the tantalizing possibility of a signal path smaller than the nanowires for advanced electronics now under development at Rice and elsewhere.

46599.gif
Animated illustration show the precise arrangement of atoms in dislocations in two-dimensional molybdenum/sulfur. Dislocations happen when two growing blooms of material come together at different angles in chemical vapor deposition. At a specific angle, the lines along which these dislocations form can become conductive.

Tags:

UCLA engineers develop new energy-efficient computer memory using magnetic materials: MeRAM is up to 1,000 times more energy-efficient than current technologies

By using electric voltage instead of a flowing electric current, researchers from UCLA's Henry Samueli School of Engineering and Applied Science have made major improvements to an ultra-fast, high-capacity class of computer memory known as magnetoresistive random access memory, or MRAM.

46601.jpg
MeRAM bit

Tags:

NASA to Provide Commentary as Grail Moon Mission Ends

pia16492-640_0.jpg
This still image and animation shows the final flight path for NASA's twin Gravity Recovery and Interior Laboratory (GRAIL) mission spacecraft, which will impact the moon on Dec. 17, 2012, around 2:28 p.m. PST.

Tags:

Rocket Burn Sets Stage for Dynamic Moon Duos' Lunar Impact

pia13966-640_0.jpg
An artist's depiction of the GRAIL twins (Ebb and Flow) in lunar orbit. During GRAIL's prime mission science phase, the two spacecraft will orbit the moon as high as 31 miles (51 kilometers) and as low as 10 miles (16 kilometers).

Tags:

Rice uses light to remotely trigger biochemical reactions: Deep-sea microbes that thrive in high temperatures are key to light-activated catalysis

Since Edison's first bulb, heat has been a mostly undesirable byproduct of light. Now researchers at Rice University are turning light into heat at the point of need, on the nanoscale, to trigger biochemical reactions remotely on demand.

46590.jpg
Chemical processes can be activated by light without the need for bulk heating of a material through a process developed by researchers at Rice University. The technique involves coating nanorods with thermophilic enzymes that are activated at high temperatures. Lighting the plasmonic gold nanorod causes highly localized heating and activates the enzyme.

Tags:

Nanocrystals Not Small Enough to Avoid Defects: Berkeley Lab Scientists at Advanced Light Source Show Dislocations Can Be Induced by Pressure in Ultrafine Nanocrystals

Nanocrystals as protective coatings for advanced gas turbine and jet engines are receiving a lot of attention for their many advantageous mechanical properties, including their resistance to stress. However, contrary to computer simulations, the tiny size of nanocrystals apparently does not safeguard them from defects. Nanocrystals Not

46596.jpg
Stress-induced deformation of nanocrystalline nickel reflects the dislocation activity observed by researchers at Berkeley Lab’s Advanced Light Source using a radial diamond-anvil-cell X-ray diffraction experimental station.