Science

Tags:

A hidden treasure in the Large Magellanic Cloud

heic1301a_0_0.jpg
Nearly 200 000 light-years from Earth, the Large Magellanic Cloud, a satellite galaxy of the Milky Way, floats in space, in a long and slow dance around our galaxy. Vast clouds of gas within it slowly collapse to form new stars. In turn, these light up the gas clouds in a riot of colours, visible in this image from the NASA/ESA Hubble Space Telescope.

Tags:

Heliatek consolidates its technology leadership by establishing a new world record for organic solar technology with a cell efficiency of 12%

Heliatek GmbH, the leader in organic solar films, today announced a record breaking 12.0% cell efficiency for its organic solar cells. This world record, established in cooperation with the University of Ulm and TU Dresden, was measured by the accredited testing facility SGS. The measurement campaign at SGS also validated the superior low light and high temperature performances of organic photovoltaics (OPV) compared to traditional solar technologies.

The 12.0% record cell on a standard size of 1.1 cm² combines two patented absorber materials, which convert light of different wavelengths. Using two different absorber materials creates a stronger absorption of photons and improves energetic utilization through a higher photovoltage.Thanks to OPV's unique behavior at high temperatures and low light conditions, this 12% efficiency is comparable to about 14% to 15% efficiency for traditional solar technologies like crystalline silicon and thin film PV. Whereas those technologies significantly lose cell efficiency with rising temperatures and decreasing solar irradiation, organic cells increase their efficiency in these conditions leading to a much higher energy harvesting in real life environments.

Tags:

Mathematical breakthrough sets out rules for more effective teleportation: New protocol advances solutions for more efficient teleportation - the transport of quantum information at the speed of light

For the last ten years, theoretical physicists have shown that the intense connections generated between particles as established in the quantum law of 'entanglement' may hold the key to eventual teleportation of quantum information.

Now, for the first time, researchers have worked out how entanglement could be 'recycled' to increase the efficiency of these connections.

Tags:

Hubble Views a Dwarf Galaxy

The constellation of Ursa Major (The Great Bear) is home to Messier 101, the Pinwheel Galaxy. Messier 101 is one of the biggest and brightest spiral galaxies in the night sky. Like the Milky Way, Messier 101 is not alone, with smaller dwarf galaxies in its neighborhood.

Tags:

Chips that can steer light: Record-setting ‘optical phased arrays’ could lead to better laser rangefinders, smaller medical-imaging devices and even holographic TVs

If you want to create a moving light source, you have a few possibilities. One is to mount a light emitter in some kind of mechanical housing — the approach used in, say, theatrical spotlights, which stagehands swivel and tilt to track performers.

Another possibility, however, is to create an array of light emitters and vary their "phase" — the alignment of the light waves they produce. The out-of-phase light waves interfere with one another, reinforcing each other in some directions but annihilating each other in others. The result is a light source that doesn't move, but can project a beam in any direction.

Tags:

How to treat heat like light: New approach using nanoparticle alloys allows heat to be focused or reflected just like electromagnetic waves

An MIT researcher has developed a technique that provides a new way of manipulating heat, allowing it to be controlled much as light waves can be manipulated by lenses and mirrors.

The approach relies on engineered materials consisting of nanostructured semiconductor alloy crystals. Heat is a vibration of matter — technically, a vibration of the atomic lattice of a material — just as sound is. Such vibrations can also be thought of as a stream of phonons — a kind of "virtual particle" that is analogous to the photons that carry light. The new approach is similar to recently developed photonic crystals that can control the passage of light, and phononic crystals that can do the same for sound.

Tags:

Study quantifies the size of holes antibacterials create in cell walls to kill bacteria: Death on a nanometer scale

The rise of antibiotic-resistant bacteria has initiated a quest for alternatives to conventional antibiotics. One potential alternative is PlyC, a potent enzyme that kills the bacteria that causes strep throat and streptococcal toxic shock syndrome. PlyC operates by locking onto the surface of a bacteria cell and chewing a hole in the cell wall large enough for the bacteria's inner membrane to protrude from the cell, ultimately causing the cell to burst and die.

Research has shown that alternative antimicrobials such as PlyC can effectively kill bacteria. However, fundamental questions remain about how bacteria respond to the holes that these therapeutics make in their cell wall and what size holes bacteria can withstand before breaking apart. Answering those questions could improve the effectiveness of current antibacterial drugs and initiate the development of new ones.

Tags:

Wavelength-Dependent Shapeshifting: Plasmon-Mediated Growth Control

Methods which allow predictable and reproducible control over the shape and defect structures of nanoparticles are a sought-after ideal in research on nanoparticle synthesis. Realising this ideal for silver nanoparticles is one step closer with the discovery that the localised surface plasmon resonance feature observed for nanoscale metals - the collective oscillation of their electrons caused by incident light - can be used to predictably direct the growth of silver nanocrystals.

46707_0.jpg
Methods which allow predictable and reproducible control over the shape and defect structures of nanoparticles are a sought-after ideal in research on nanoparticle synthesis. Realising this ideal for silver nanoparticles is one step closer with the discovery that the localised surface plasmon resonance feature observed for nanoscale metals - the collective oscillation of their electrons caused by incident light - can be used to predictably direct the growth of silver nanocrystals.

Tags:

NASA Rules Out Earth Impact in 2036 for Asteroid Apophis

apophis-20071114-640_0_0.jpg
Asteroid Apophis was discovered on June 19, 2004.

Tags:

NASA's GALEX Reveals the Largest-Known Spiral Galaxy

The spectacular barred spiral galaxy NGC 6872 has ranked among the biggest stellar systems for decades. Now a team of astronomers from the United States, Chile and Brazil has crowned it the largest known spiral, based on archival data from NASA's Galaxy Evolution Explorer (GALEX) mission, which has since been loaned to the California Institute of Technology in Pasadena.