Science

Tags:

3D nanostructure of a bone made visible

Bones are made up of tiny fibres that are roughly a thousand times finer than a human hair. One major feature of these so-called collagen fibrils is that they are ordered and aligned differently depending on the part of the bone they are found in. Although this ordering is decisive for the mechanical stability of the bone, traditional computer tomography (CT) can only be used to determine the density but not the local orientation of the underlying nanostructure. Researchers at the Paul Scherrer Institute PSI have now overcome this limitation thanks to an innovative computer-based algorithm. They applied the method to measurements of a piece of bone obtained using the Swiss Light Source SLS. Their approach enabled them to determine the localised order and alignment of the collagen fibrils inside the bone in three dimensions. Aside from bone, the method can be applied to a wide variety of biological and materials science specimens.

52582.jpg
The bone and its nanostructure: Thanks to their newly developed algorithm, researchers at PSI succeeded in mapping the order and alignment of the tiny collagen fibrils in this entire bone fragment of roughly two and a half millimetre length.

Tags:

Application of Nanocomposite Membranes in Fuel Cells to Produce Green Energy

The application of fuel cells increases every day in various industries due to the importance of using sustainable and green energy sources.

52574_0.jpg

Tags:

Plasma Focus Device Applied to Produce Zinc Oxide Nanofilms

A group of Iranian researchers used a new method to produce nanostructured films in a short period of time at room temperature.

52575_0.jpg

Tags:

Ultra-short X-ray pulses could shed new light on the fastest events in physics

If you've ever been captivated by slow-motion footage on a wildlife documentary, or you've shuddered when similar technology is used to replay highlights from a boxing match, you'll know how impressive advancements in ultra-fast science can be.

Researchers from the Department of Physics at Oxford University (with colleagues at the Rutherford Appleton Laboratory and the University of Strathclyde) have demonstrated, for the first time, that it is possible to generate ultra-short x-ray pulses using existing technology - and it could open up a huge range of scientific applications.

Tags:

New nanoscopic tools to study ligand-binding of receptors

Signalling processes in organisms are governed by specific extracellular and intracellular interactions and involve hundreds of different functionally highly versatile receptors situated in cell membranes. For scientists wishing to understand signalling processes the situation is made more complex by the receptors not only being unevenly distributed and often able to bind more than one ligand but also by the same type of receptor being able to bind a ligand strongly, weakly or not at all. New methods that allow precise quantifications of such complex interactions are urgently required.

52568.jpg
pm_305_Nature Communications Tampe

Tags:

Researchers design and patent graphene biosensors: The Moscow Institute of Physics and Technology is patenting biosensor chips based on graphene, graphene oxide and carbon nanotubes that will improve the analysis of biochemical reactions and accelerate th

Graphene is the first truly two-dimensional crystal, which was obtained experimentally and investigated regarding its unique chemical and physical properties. In 2010, two MIPT alumni, Andre Geim and Konstantin Novoselov were awarded the Nobel Prize in Physics "for ground-breaking experiments regarding the two-dimensional material graphene". There has now been a considerable increase in the number of research studies aimed at finding commercial applications for graphene and other two-dimensional materials. One of the most promising applications for graphene is thought to be biomedical technologies, which is what researchers from the Laboratory of Nanooptics and Plasmonics at the MIPT's Center of Excellence for Nanoscale Optoelectronics are currently investigating.

Label-free biosensors are relatively new in biochemical and pharmaceutical laboratories, and have made work much easier. The sensors enable researchers to detect low concentrations of biologically significant molecular substances (RNA, DNA, proteins, including antibodies and antigens, viruses and bacteria) and study their chemical properties.

Tags:

Imitating synapses of the human brain could lead to smarter electronics

Making a computer that learns and remembers like a human brain is a daunting challenge. The complex organ has 86 billion neurons and trillions of connections -- or synapses -- that can grow stronger or weaker over time. But now scientists report in the development of a first-of-its-kind synthetic synapse that mimics the plasticity of the real thing, bringing us one step closer to human-like artificial intelligence.

52558.jpg
Connections, or synapses, between neurons are inspiring scientists to create artificial versions that could lead to smarter electronics.

Tags:

Quantum Dots Have Good News about Higher Efficiency in Solar Cells

Iranian researchers studied the effect of using quantum dots in the structure of solar cells on the efficiency of the equipment.

52560_0.jpg

Tags:

NASA's RapidScat Sees OLYMPEX Winds

A low pressure system in the Pacific Ocean south of Alaska has moved far enough eastward that it is bringing rain and strong winds to the Pacific Northwest where the OLYMPEX field campaign is under way. NASA's RapidScat instrument analyzed those strong coastal winds from space.

Tags:

As Earth Warms, NASA Targets ‘Other Half’ of Carbon, Climate Equation

During a noon EST media teleconference on November 13, NASA and university scientists will discuss new insights, tools and agency research into key carbon and climate change questions, as the agency ramps up its efforts to understand how Earth’s ocean, forest, and land ecosystems absorb nearly half of emitted carbon dioxide today.