Science

Tags:

New Satellite-Based Maps to Aid in Climate Forecasts

New, detailed maps of the world's natural landscapes created using NASA satellite data could help scientists better predict the impacts of future climate change.

Tags:

Leading bugs to the death chamber: A kinder face of cholesterol

Cells of our immune system kill pathogens by enclosing them in a compartment called the phagosome. The phagosome undergoes programmed maturation, where the pathogen is degraded. Intimately linked to this degradation is active transport of the phagosome inside cells by nanoscale "Motor" proteins such as Dynein and Kinesin, which are force generators for many kinds of biological movements.

Phagosomes carried by the Motors initially move in a back-and-forth manner near the cell periphery, and mature by fusing with other compartments. As time passes, there is a switch that causes the phagosomes to move in an almost unidirectional manner towards the cell centre. Here, they fuse with acidic lysosomes so that the pathogen can be degraded.

Tags:

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture

Graphene, a material consisting of a single layer of carbon atoms, has been touted as the strongest material known to exist, 200 times stronger than steel, lighter than paper, and with extraordinary mechanical and electrical properties. But can it live up to its promise?

Scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have developed the first known statistical theory for the toughness of polycrystalline graphene, which is made with chemical vapor deposition, and found that it is indeed strong (albeit not quite as strong as pristine monocrystalline graphene), but more importantly, its toughness--or resistance to fracture--is quite low. Their study, "Toughness and strength of nanocyrstalline graphene," was published recently in Nature Communications.

Tags:

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices

Scientists from the Faculty of Physics of the Moscow State University have grown organic semiconductor crystals which can reduce the cost of the process of creating light, flexible and transparent light-emitting electronic devices of the new generation.

A team of researchers from the Faculty of Physics of Moscow State University in cooperation with Russian and foreign colleagues learnt to grow organic semiconductor crystals with extremely high light-emitting efficiency that promise a bright future for wet-processed organic optoelectronics.

Tags:

Electrons and liquid helium advance understanding of zero-resistance: Study of electrons on liquid helium systems sheds light on zero-resistance phenomenon in semiconductors

The end of Moore's Law -- the prediction that transistor density would double every two years -- was one of the hottest topics in electronics-related discussions in 2015. Silicon-based technologies have nearly reached the physical limits of the number and size of transistors that can be crammed into one chip, but alternative technologies are still far from mass implementation. The amount of heat generated during operation and the sizes of atoms and molecules in materials used in transistor manufacturing are some of problems that need to be solved for Moore's Law to make a comeback.

52943.jpg
This is a cell (container) where the electrons on liquid helium experiments are conducted.

Tags:

Nanosheet growth technique could revolutionize nanomaterial production

After six years of painstaking effort, a group of University of Wisconsin-Madison materials scientists believe the tiny sheets of the semiconductor zinc oxide they're growing could have huge implications for the future of a host of electronic and biomedical devices.

52934.jpg
The new nanoscale manufacturing process draws zinc to the surface of a liquid, where it forms sheets just a few atoms thick.

Tags:

New invention revolutionizes heat transport

Scientists at Aalto University, Finland, have made a breakthrough in physics. They succeeded in transporting heat maximally effectively ten thousand times further than ever before. The discovery may lead to a giant leap in the development of quantum computers.

52939.jpg
Artistic impression of quantum-limited heat conduction of photons over macroscopic distances.

Tags:

First SpaceDataHighway laser relay in orbit

The European Data Relay System’s first laser terminal has reached space aboard its host satellite and is now under way to its final operating position.

Tags:

A step towards keeping up with Moore's Law: POSTECH researchers develop a novel and efficient fabrication technology for cross-shaped memristor

Along with the fast development of modern information technology, charge-based memories, such as DRAM and flash memory, are being aggressively scaled down to meet the current trend of small size devices. A memory device with high density, faster speed, and low power consumption is desired to satisfy Moore's law in the next few decades. Among the candidates of next-generation memory devices, cross-bar-shaped non-volatile resistive memory (memristor) is one of the most attractive solutions for its non-volatility, faster access speed, ultra-high density and easier fabrication process.

Conventional memristors are usually fabricated through conventional optical, imprint, and e-beam lithographic approaches. However, to meet Moore's law, the assembly of memristors comprised of 1-dimensional (1D) nanowires must be demonstrated to achieve cell dimensions beyond limit of state-of-art lithographic techniques, thus allowing one to fully exploit the scaling potential of high density memory array.

Tags:

NASA Damage Maps May Help in Future Quakes

Nepal's magnitude 7.8 Gorkha earthquake caused significant damage and loss of life in 2015. In natural disasters like this, it is critical to locate areas that are in the most need of assistance as fast as possible.