The Gifts of Prometheus (Part I)

Fusion & Physical Chemistry

Tags:
2014-02-16

This program by a LaRouche PAC Scientific Team was webcast on Feb. 1, and hosted by Creighton Jones. The video, including the questions and answers, can be viewed online

Creighton Jones: What will be presented today was spurred by certain comments by Lyndon LaRouche in the wake of the decision on the part of the Ukrainian government to reject the economic offers from the European Union, and to instead adopt and accept a proposal from the Russians. What this represented was a decision between two types of systems: On the one hand, what the European Union was offering, and what the monetarist system in general continues to offer, which is extended debt, some monetary guarantees, maybe the opportunity for the stationing of anti-ballistic-missile systems in your country, and everything that goes along with that. Or, on the other hand, what Ukraine in fact accepted, was an offer for agreements from Russia, around things like energy, physical productivity, and the like.

The kind of decision that Ukraine has faced, because of what this represents globally—we've seen that it has created a real crisis on an international level. It epitomizes the kind of decision that all nations are going to have to make—whether it be nations in Europe, whether it be the United States, whether it be China, all nations.

What Is Value?

Now, it really poses the question, as Mr. LaRouche put it, of what is value, what is survival for a nation? Is value simply a question of money, something which is determined by "market forces"? Or, is value something which is physical? Is there something deeper to the idea of value than simply what the stock market says is valuable, or what consumer interests say is valuable? And that's exactly what we're going to get into today: What, in fact, is value?

This comes up in another way, when we look at, say, the recent achievements on the part of the Chinese, who landed a rover on the Moon, and have made it very clear that their long-arching intention on the Moon is to industrialize it, to mine it for such things as helium-3. What's the value of helium-3? Why would you ever want to bring helium-3 from the Moon, back to Earth? I haven't heard Warren Buffett say anything about the value of helium-3. It's not something which is often referred to on the commodities markets.

So what is the value of helium-3?

Well, in the current market context, it doesn't have a whole lot of value; it's got minimal use. It's not something which is commonly thought of as a "valuable commodity," the way people discuss gold or diamonds. But what's the value of helium-3, in the context of, say, the development of fusion technology, of fusion reactors, capable of using helium-3 to produce energy, where it's been estimated that a single shuttle-load of helium-3 brought from the Moon to Earth, would produce enough energy to power the United States for an entire year?

There, value has a very different kind of idea, a physical idea, an idea which is steeped in an intention for the future. It has a value which is defined not by markets, but by the human mind, and by an intention to advance humanity as a whole.

And so, the fight around the question of what is value, is a fight which is as old as the hills, so to speak—or in our case, as old as Mount Olympus. And so, with that, I'll turn it over to our speakers.

I'm joined today by Jason Ross, a member of the LaRouche PAC Science Team and editor-in-chief of 21st Century Science & Technology magazine, and also Liona Fan-Chiang, who recently presented on our weekly science show, "A New Paradigm for Mankind," a history of the development of chemistry, and counterposed the two differing epistemological approaches to atomic physics. And she'll also be available to answer questions in referring to these topics.

So, with that, I'll turn it over to Jason Ross.

The 'Arts' of Prometheus

Jason Ross: As the theme of this webcast indicates, "The Continuing Gifts of Prometheus: Fusion and Physical Chemistry," we're going to be using the theme of Prometheus to guide our approach to what the value is of our increasing mastery over the physical universe, our creation of new materials, and new powers.

Many of you have probably heard the story of Prometheus. He was a Titan, who, according to Aeschylus, helped overthrow Chronos and put in place Zeus, as the new chief god of Olympus. However, you may not know that this is not a myth. This is not a made-up story, this is not fantasy; this is reality.

As Aeschylus explains this to us, in his play Prometheus Bound, part of a trilogy (of which we've lost the other two plays), as the play opens, Prometheus is being chained to a rock by some other gods, who explain how Zeus is punishing Prometheus for what he's done.

Prometheus expresses how the goal of Zeus had been to destroy the human race. That as he was passing out gifts to the gods, when it came to humanity, he gave them nothing, and in fact, planned to destroy the human race and send it down to Hades. Prometheus says that he was the only one to object to this; that he was the one who saved mankind from what would have been its fate. He explains this is why he's being punished.

The Chorus responds to Prometheus, that anybody who doesn't understand his plight is made of stone; that anybody who would not feel pity for what he is going through would really not be seeing things right. And that actually, most of the gods do pity him:

Chorus: Iron-hearted and made of stone, Prometheus, is he who feels no compassion at your miseries. For myself, I would not have desired to see them; and now that I see them, I am pained in my heart.

Prometheus: Yes, to my friends indeed I am a spectacle of pity.

Chorus: Did you perhaps transgress even somewhat beyond this offense?

Even beyond saving mankind from destruction when Zeus planned to eliminate the human race?

Prometheus: Yes, I caused mortals to cease foreseeing their doom.

Chorus: Of what sort was the cure that you found for this affliction?

Prometheus: I caused unseen hopes to dwell within their breasts.

Now, what does this mean, "I caused mortals to cease foreseeing their doom"?

You may have heard the story of Pandora. After Zeus chained up Prometheus, he sent Pandora as a punishment—Pandora was the first woman—and she brought with her a bottle, which she was not supposed to open, but she did. And all matter of calamity came out of it, except for one thing. You may have heard that this was "hope." That's not true. If we didn't have hope, then we wouldn't have hope. Hope is an expectation of good things in the future; what was left in that jar, was the lack of free will, a foreknowledge of what your life would lead to. That's what we did not have.

Prometheus says that he prevented this from afflicting mankind by giving us unseen hopes, by having no fixed future. This separated us completely, from the animals, in thought already.

Since Chorus asked him, is there anything else that you have done, he responds, yes, I also gave mankind fire.

Chorus says:

"Really? Do creatures of a day—mortals—do they now have flame-eyed fire?"

And Prometheus says:

"Yes, and from it they shall learn many arts."

And that's what we're going to be getting into today.

Let's look at what some of these arts were. Among the arts that Prometheus has given to mankind, and that he enumerates, are basically everything that we use today. He says that although "they had eyes to see, they saw to no avail; they had ears, but they did not understand; but, just as shapes in dreams, throughout their length of days, without purpose they wrought all things in confusion. They had neither knowledge of houses built of bricks and turned to face the sun nor yet of work in wood; but dwelt beneath the ground like swarming ants, in sunless caves. They had no sign either of Winter or of flowery Spring or of fruitful Summer, on which they could depend, but managed everything without judgment, until I taught them to discern the risings of the stars and their settings, which are difficult to distinguish."

So he said, we've got construction, we've got the calendar, using astronomy, to know what time of the year it is.

Prometheus: Numbers, too, chiefest of sciences, I invented for them, and the combining of letters, creative mother of the Muses' arts, with which to hold all things in memory. I, too, first brought brute beasts beneath the yoke to be subject to the collar and the pack-saddle, so that they might bear in the man's stead their heaviest burdens; and to the chariot I harnessed horses and made them obedient to the rein, to be an image of wealth and luxury. It was I and no one else who invented the mariner's flaxen-winged car" (the sailing ship) "that roams the sea. Wretched that I am—such are the arts I devised for mankind, yet have myself no cunning means to rid me of my present suffering.

Chorus: You have suffered sorrow and humiliation. You have lost your wits and gone astray; and, like an unskilled doctor, fallen ill, you lose heart and cannot discover by which remedies to cure your own disease.

Prometheus: Hear the rest and you shall wonder the more at the arts and resources I devised. This first and foremost: if ever man fell ill, there was no defense—not healing food, no ointment, nor any drink—but for lack of medicine they wasted away, until I showed them how to mix soothing remedies with which they now ward off their disorders.... Now as to the benefits to men that lay concealed beneath the Earth—bronze, iron, silver, and gold—who would claim to have discovered them before me? No one, I know full well, unless he likes to babble idly. Hear the sum of the whole matter in the compass of one brief word—every art possessed by man comes from Prometheus.

"Every art possessed by man comes from Prometheus."

In the story that continues as told by Aeschylus, Prometheus is visited by a number of different people. Some of them give him support, some of them tell him that he's really screwed up, that he's made a terrible mistake for his life; that he could have left mankind alone, he could have avoided displeasing Zeus, he could have kept the powers of the gods to be their powers alone, but he didn't. The question that comes up is: Did Prometheus err? Did he make a mistake? There are those who try to convince him that he has, but he knows better.

So let's get into what these gifts are and what kind of eras created them. An analysis, looking through history, shows us that the natural state of the human species is to develop, is to grow, is to be creative. And that it is only during the times of empire's control that man is held back.

So let's go through what these types of fire are: First, let's actually discuss fire.

Here you see (Figure 1) a chart of the uses of fire throughout the history of the United States, the amount of energy used per capita in the United States; you can see that the green is wood. We weren't using coal in the beginnings of the United States. You can see how, as the development of coal became more important, with the steam engine and things like this throughout the middle of the 19th Century, coal eclipsed the use of wood, and became the dominant energy source. Coal has much more energy per unit than does wood. It's also much more compact, and you do a lot of things with wood that you can't do with coal—you can build a house out of wood. And you can do things with coal that you can't do with wood. More on that coming up.

We then see the next type of energy source: petroleum and natural gas. Petroleum has a higher energy density than coal; you can use it in engines, we use it for transportation. You can see how it is taking over as an increasing energy source.

Then you see fission energy, our nuclear plants. You can see how that could have become our next energy, but it simply didn't. The petroleum and natural gas are decreasing slightly per capita, nuclear did not grow, and if you look at the history of the growth of these forms of fire, the amount of energy per capita that we have in the United States now, should be two to three times what it currently is!

Let's talk about why that is, why this hasn't continued, and let's look at what these uses of fire have meant for us over time.

Materials for Mankind's Use

The history of mankind is sometimes broken up into ages, named after materials: the Stone Age, the Bronze Age, the Iron Age, the Steel Age. The Stone Age should probably be called the Fire Age, however, because man's history begins with our use of fire. During the Stone Age, we had art, we had sculpture, we had the development of tools, wooden tools of course, and stone tools. We had the use of fire to harden those stone tools. We had baking, we had cooking, we had woodworking, we had sculpting, we had fabrics and weaving, so to insult this society and say this is a "stone age" society, that we're much more advanced right now—well, you have to look in the context of where mankind is. Is it progressing?

But the beginnings of human history, of our written records, go to about the time of what we call the Bronze Age. This happened around 5,000 years ago, and it began with the creation of materials.

Figure 2 is an image of copper as found in its native state. Just like you find various gems and minerals in the ground or on the ground, copper was actually found in nature. It's a metal that exists in its natural state: 10,000 years ago, human beings were turning copper into tools, beating it, shaping it, using heat to soften it, to change its shape even more, hardening it by hammering—10,000 years ago.

The other examples in this early time were gold, which was mined over 5,000 years ago; silver could also be found. So metals were known. But the real breakthrough came with the development of materials—it seems almost like a miracle!

Here I have a piece of malachite. As you can see, it's a green rock. It looks like a rock; there's nothing particularly special about this, that would make you think you could do anything with it besides maybe use it to beat something, or that sort of thing. However, you might be surprised that this is what you can make from it: a piece of copper wire.

The copper that we use in our homes, the copper wiring and everything else comes from ores, like malachite. The original development of this discovery—5,000 years ago—was the beginning of what came to be called "the Bronze Age" because of something that was added to the copper.

You could make tools out of copper, but they weren't actually better than stone tools. You had new techniques for shaping them and for forming them, and that was very good; but the actual physical qualities of copper, once you make the tool, are not superior to, say, a sharp piece of flint for cutting. The real development came from creating bronze. To do this, not only did human beings have to transform a green rock into a shiny copper metal; they also had to know that if you added tin to this copper, that you would create a new metal, bronze, which is superior to copper, and it's superior to tin. It's a material that never existed on Earth, except maybe in very small amounts, in tiny pockets; that never existed on Earth before human beings created it.

Now, what made it possible to make this transformation? Here I have a charcoal briquette, nothing too special about it. Do you know where charcoal comes from? You might say the grocery store, that's probably where your charcoal comes from—but it's made from wood.

Figure 3 is a 100-year-old picture of charcoal production. Looks like a pleasant pastime for these people! You take a large amount of wood, you put it in a pile, and then in Figure 4, you see what we do to it: You cover the whole pile with soil, and you burn it. Here the wood is baking, burning with very little oxygen, for two to three days under all of that dirt. After that time, when you uncover the dirt, you find that the wood is actually transformed into charcoal.

What's so good about charcoal? Well, it burns hotter than wood does; it's much cleaner than wood. When you burn wood, there are a lot of things in wood that come out of it, a lot of different chemicals, a lot of different elements. Charcoal is almost 100% pure carbon.

The Bronze Age

So, with the charcoal and the malachite, you would get beds of charcoal; you would powder the malachite by banging it up, you would burn them together for a few hours, probably blowing in air to help the temperature get hotter and help the process, and what occurs is that—people obviously didn't know this 5,000 years ago, in this way—but the carbon from the charcoal combines with the oxygen in the malachite—this is basically rusted copper—and it pulls the oxygen out of it, leaving behind the metal. This is an astonishing thing to do 5,000 years ago! It's an astonishing thing to do today. I think if you do it yourself, it's pretty amazing.

The development of bronze meant that we had created something totally new, totally more useful. The next big thing you could do with bronze, is that you could produce cast objects with it (Figure 5). Casting something such as a cast iron pan, means that you have melted the bronze; you have poured it into a mold, it then hardens—here you can see the bronze being poured in—it hardens and makes whatever shape you want. This was a new thing that you were able to do with bronze that was much more difficult with copper.

Okay. Let's look at the next breakthrough. Around 1200 B.C. a shift was made, where bronze sort of disappeared from use. The difficulty in obtaining the tin for bronze meant that its use declined; you often don't find copper and tin near each other, so with the breakdown of trade routes which stretched as far as the British Isles, maybe even the New World, tin wasn't available; no more bronze.

Source: Executive Intelligence Review