Iron Oxide Nanoparticles Help Investigation of Cognitive Diseases

Iranian researchers from Islamic Azad University, Tehran Branch, in association with researchers from Institute of Biochemistry & Biophysics (IBB) of University of Tehran carried out in vitro an investigation into the changes in the structure of proteins inside brain cells and the interactions of the proteins using iron oxide nanoparticles.

Tags:
2013-11-25

The progress of cognitive diseases that do not have any known definite treatment can be prevented if a treatment method is designed and optimized for cognitive diseases such as Alzheimer's-based on controlling metabolism processes of iron oxide in brain cells.

48562.jpg

The research showed that microtubules can create magnetic field around themselves due to their dynamic properties and electrical charge. Therefore, they can play role in the transference of electrical signals in brain cells (neurons). It can be said that the protein plays an important role in the transference and probably in saving date in the brain. The malfunction in the performance of microtubules is one of the reasons for the appearance of cognitive diseases such as Alzheimer's.

Iron oxide nanoparticles were firstly produced in this research. Then, microtubule protein was extracted from the brain of a newly-died sheep, and its activity was studied through turbidimetry method. Next, the researchers studied the interaction between nanoparticles and microtubule and tau protein (a protein which is effective in the structural and functional stability of microtubules).

Results of the research showed that iron oxide magnetic nanoparticles and microtubules existing in the neurons can have magnetic interactions with each other, which is essential for the transference and conservation of brain data. However, if the nanoparticles are accumulated in the brain, which can be caused due to the malfunction of iron metabolism in brain cells and due to the improper conservation of iron in a protein called ferritin, the abovementioned interaction may be damaged, and nanoparticles connect with microtubules and tau protein, which results in the instability of microtubular polymers.

Source: Nanotechnology Now